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Abstract. We expose the relation between the properties of the three-body continuum states and their
two-body subsystems. These properties refer to their bound and virtual states and resonances, all defined
as poles of the S-matrix. For one infinitely heavy core and two non-interacting light particles, the complex
energies of the three-body poles are the sum of the two two-body complex pole-energies. These generic
relations are modified by center-of-mass effects which alone can produce a Borromean system. We show how
the three-body states evolve in 6He, 6Li, and 6Be when the nucleon-nucleon interaction is continuously
switched on. The schematic model is able to reproduce the main properties in their spectra. Realistic
calculations for these nuclei are shown in detail for comparison. The implications of a core with non-
zero spin are investigated and illustrated for 17Ne (15O+ p+ p). Dimensionless units allow predictions for
systems of different scales.

PACS. 21.45.+v Few-body systems – 31.15.Ja Hyperspherical methods – 25.70.Ef Resonances – 11.80.Jy
Many-body scattering and Faddeev equation

1 Introduction

The three-body problem has a long history from macro-
scopic celestial classical mechanics, e.g. Sun-Earth-
Moon [1] to microscopic quantum mechanics, e.g. the he-
lium atom [2], three nucleons [3] or three quarks [4]. The
modern treatment was boosted by the formulation of the
Faddeev equations [5] originally aimed at scattering prob-
lems, but also successfully applied for bound states [6, 7].
The more recent interest in bound-state halo structures
and Borromean systems are by now fairly well understood
in terms of the basic two-body interactions [8]. The suc-
cess is at least indisputable for three-body systems with
only one or a few bound states.

On the other hand, the corresponding three-body
properties for positive energies (energies above breakup)
are much less established although studied thoroughly
for both short- and long-range interactions [2, 9]. Con-
tributions from both short- and long-range interactions
make computations numerically difficult. The three-body
Coulomb problem itself is still considered unsolved [10–12]
and three-body resonances for strongly interacting parti-
cles are still debated [13–17]. This is unfortunate, since the
continuum structure often forms the basis in descriptions
of the dynamic behavior of a given system.
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Crucial properties of the continuum are revealed by in-
formation about the resonances and virtual states defined
as poles of the S-matrix. Together with the discrete set of
bound negative-energy states we also have a discrete set
of unbound complex-energy states with their correspond-
ing wave functions. For completeness also the continuous
non-singular background states are needed, but the singu-
larities of the scattering matrix are very often decisive. Im-
portant examples using different methods within few-body
physics are astrophysical reaction rates [18], adiabatic re-
action processes arising at low energies or for large impact
parameters [19], three-body decays [20], three-body reso-
nances for Faddeev operators [21], for nucleons [22], for
electrons and positrons [23] and four-body nuclear contin-
uum states [24]. This list could be extended.

Continuum structure is in general more difficult than
bound-state problems although various methods have
been designed to overcome the technical problems at least
for resonances, see for example [9, 15–17, 25, 26]. An un-
derstanding of the generic origin of S-matrix poles would
be tremendously helpful especially if recognizable traces
of a well-structured origin are left in the realistic spectra.
No doubt this would allow easier interpretation of compli-
cated numerical results, allowed design of better methods,
and indicate which effects to look for in different contexts.

The purpose of this work is to investigate how the two-
body interactions determine the three-body continuum
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structure. We focus on three-body continuum states where
none of the two-body subsystems is bound (Borromean
systems). When two-body bound states are possible, dif-
ferent three-body structures can appear, as for instance,
unbound three-body states with negative energy. However,
these systems can very often be understood as two-body
systems made by a two-body bound state and the remain-
ing third particle in the continuum. With the help of the
hyperspheric adiabatic expansion method we determine
what three-body bound or virtual states and resonances
result from given sets of corresponding two-body proper-
ties. Taking a simple system as starting point, it is then
possible to observe how the three-body states evolve in
the complex energy plane when more and more realistic
features are incorporated into the calculation.

In sect. 2 we give details about the complex scaled adi-
abatic expansion methods. In sect. 3 the schematic sys-
tem of an infinitely heavy core and two mutually non-
interacting light particles is described analytically, while
in sect. 4 the general properties of the system are described
after numerical studies of specific systems. In sect. 5 we
relate the spectra from the schematic model with those
obtained in realistic calculations for systems with zero
(6He, 6Li, 6Be) and non-zero core-spin (17Ne). We fin-
ish in sect. 6 with some qualitative estimates for other
systems and in sect. 7 we give a short summary and the
conclusions.

2 The complex scaled hyperspheric adiabatic

expansion method

To describe a three-body system we use the standard co-
ordinates:

xi =

√

mjmk

m(mj +mk)
(rj − rk) ,

(1)

yi =

√

mi(mj +mk)

m(mi +mj +mk)

(

ri −
mjrj +mkrk

mj +mk

)

,

wheremi,mj , andmk are the masses of the three particles
and m is an arbitrary normalization mass. From the Ja-
cobi coordinates we define the hyperspheric coordinates
{ρ,Ωi}, where {Ωi} = {αi, Ωxi

, Ωyi
}, ρ =

√

x2
i + y

2
i ,

αi = arctan(xi/yi), and Ωxi
and Ωyi

give the directions
of xi and yi, respectively.

The three-body wave function is written as a sum of
three components ψ(i)(xi,yi), each corresponding to one
of the three possible sets of Jacobi coordinates [7]. These
three components satisfy the three Faddeev equations

(T − E)ψ(i)(xi,yi) + Vjk(xi)

×
(

ψ(i)(xi,yi) + ψ
(j)(xj ,yj) + ψ

(k)(xk,yk)
)

= 0, (2)

where T is the kinetic energy operator, Vjk(xi) is the two-
body interaction between particles j and k, and E is the
three-body energy. Here (i, j, k) is a cyclic permutation of
(1, 2, 3).

We employ the hyperspheric coordinates to expand
each component ψ(i)(xi,yi) in terms of a complete set

of angular functions φ
(i)
n ,

ψ(i)
n0
(xi,yi) =

1

ρ5/2

∑

n

f (n0)
n (ρ)φ(i)

n (ρ,Ωi), (3)

where the additional index n0 labels different solutions
we later on want to consider. Usually the expansion (3)
converges rather fast, and only a few terms (typically no
more than three) are needed.

By rewriting eq. (2) in terms of the hyperspheric coor-
dinates, and inserting the expansions in eq. (3) we separate
the Faddeev equations into angular and radial parts:

(Λ̂2−λn(ρ))φ(i)
n −

2mρ2

~2
V

(i)
jk (xi)

(

φ(i)
n +φ

(j)
n +φ(k)

n

)

= 0 ,
(4)

[

− d2

dρ2
− 2mE

~2
+
1

ρ2

(

λn(ρ) +
15

4

)]

f (n0)
n (ρ) =

∑

n′

(

2Pnn′
d

dρ
+Qnn′

)

f
(n0)
n′ (ρ) , (5)

where Λ̂2 is a hyperangular operator which together with
expressions for the functions Pnn′(ρ) and Qnn′(ρ) can be

found in [7]. The complete set of angular functions φ
(i)
n in

the expansion (3) are precisely the eigenfunctions of the
angular part of the Faddeev equations. The index n la-
bels the corresponding eigenvalue λn, which enters in the
coupled set of radial equations (5) as effective potentials.
The index n0 is related to the boundary condition for con-
tinuum wave functions, which for short-range interactions
and no two-body bound states has the asymptotics given
by [7]

f (n0)
n (κρ) −→ √

κρ
[

H
(2)
K+2(κρ)δ

n0

n + Sn0

n (κ)H
(1)
K+2(κρ)

]

,

(6)
where n0 then labels the incoming channel, the S-matrix
Sn0

n is a factor depending on the complex momentum κ

related to the complex energy E by κ =
√

2mE/~2, and

H
(1)
K and H

(2)
K are Hankel functions of first and second

kind. The hypermomentum K is given by the asymptotic
behaviour of the angular eigenvalue λn(ρ) that approaches
K(K + 4) [7].

For three-body bound states f
(n0)
n must fall off

exponentially at large distances. Then only one Hankel
function is present and the S-matrix Sn0

n has a pole for
the imaginary momentum κ (κ = i|κ|) and the energy
E is negative. Poles of the S-matrix in the lower half of
the complex momentum plane correspond to three-body
resonances, and their asymptotic radial wave function is

given only by the H
(1)
K+2 part in eq. (6). Asymptotically

the Hankel function H
(2)
K+2 vanishes exponentially like

e−|κ|ρ, while H
(1)
K+2 grows like e|κ|ρ. This means that

the radial coefficients of the continuum wave functions
are dominated by the H

(1)
K+2 part. Therefore, it is very

difficult to distinguish the resonance wave function, where
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only the H
(1)
K+2 term is present in the asymptotics, from

an ordinary continuum wave function.
This problem is solved by applying the complex scal-

ing method [25, 27–30], where the Jacobi coordinates xi
and yi are rotated into the complex plane by an arbitrary
angle θ (xi → xie

iθ, yi → yie
iθ). This means that only

the hyperradius ρ is rotated (ρ→ ρeiθ), while the five hy-
perangles {Ωi} remain unchanged. After this rotation the
radial wave functions of the resonances behave asymptot-
ically like

f (n0)
n (κρeiθ)→ √

ρH
(1)
K+2(|κ|ρei(θ−θR))→

e−|κ|ρ sin (θ−θR)ei(|κ|ρ cos (θ−θR)−Kπ/2+3π/4), (7)

where θR is the argument of the complex momentum κ
(κ = |κ|e−iθR). From (7) we observe that when θ > θR
the radial wave function falls off exponentially, exactly as
a bound state. Continuum wave functions are dominated
in the asymptotics by the H

(2)
K+2(|κ|ρei(θ−θR)) term, that

diverges exponentially when θ > θR. Thus, after complex
scaling, resonances can be easily distinguished from or-
dinary continuum states, and furthermore, the numerical
technique used to compute bound states can be used for
resonances. In particular, after solving the complex scaled
equations (4) and (5) with the boundary condition (7)
three-body resonances and bound states are simultane-
ously obtained. Solving eq. (5) with a box boundary con-
dition (f(ρmax) = 0, ρmax being a large value of the hy-
perradius) discretizes the continuum spectrum, and the
continuum states are rotated by an angle θ in the mo-
mentum plane and 2θ in the energy plane [25]. The box
boundary condition is often enough to obtain accurate
bound state and resonance solutions.

3 Two independent subsystems

We analyze in this section the schematic model of an in-
finitely heavy core and two light particles. These two mu-
tually non-interacting light particles interact with the core
via short-range interactions. We shall first assume that
these three particles have zero spin and then later gener-
alize to non-zero particle spins.

3.1 Particles without spin

From the Jacobi coordinates (1) we can construct the cor-
responding conjugated momenta:

kxi
=

√

mmjmk

mj +mk

(

pj

mj
− pk

mk

)

,

(8)

kyi
=

√

mmi(mj +mk)

(mi +mj +mk)

(

pi

mi
− pj + pk

mj +mk

)

.

In precise analogy to the hyperradial coordinates, we now
introduce the hypermomentum coordinates {κ,Ωκi

} de-
fined as {Ωκi

} = {ακi
, Ωkxi

, Ωkyi
}, κ =

√

k2
xi
+ k2

yi
,
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Fig. 1. Sketch of the schematic three-body system. Particles
i and j do not interact with each other. Particle k is infinitely
heavy. One set of Jacobi coordinates and their corresponding
conjugate momenta are given in the lower part.

ακi
= arctan(kxi

/kyi
). The three-body momentum κ de-

fined earlier is independent of the Jacobi coordinate sys-
tem labeled i. The directions of kxi

and kyi
are described

by Ωkxi
and Ωkyi

, respectively.
When one of the three spinless particles has infinite

mass (let us take mk = ∞), eqs. (1) and (8) simplify, in
the three-body center-of-mass system where rk = 0 and
pi+pj+pk = 0, to the form in fig. 1. Therefore, in two of
the three possible sets of Jacobi coordinates, the coordi-
nates are simply proportional to the distances between the
infinitely heavy core and each of the two light particles.
If the two-body interactions depend only on the distance
between particles, the three-body Hamiltonian H can be
written as H = Hki +Hkj (see fig. 1) where Hki and Hkj

are the two-body Hamiltonians describing the correspond-
ing two-body systems. From this separability, the three-
body bound-state energies are obviously given by the sum
of the corresponding two-body bound-state energies.

For three-body resonances and virtual states the same
happens. Three-body resonances show up at energies
equal to the sum of the two-body resonance energies of
the ki and kj subsystems. From the separability of the
Hamiltonian this result may be accepted as obvious. How-
ever, the only trivial deduction using the separability is
that the three-body energy is given by the sum of the two
two-body energies. This does not necessarily imply that
a three-body energy equal to the sum of two two-body
resonance energies must correspond to a three-body reso-
nance. Bound states have discrete energies, and the split of
a given three-body bound-state energy into two two-body
energies can be made only in specific ways, since the two-
body energies can have only the specific values correspond-
ing to the discrete two-body bound-state spectrum. How-
ever, resonances are continuum states, and then a given
three-body energy can be obtained by infinitely many
pairs of two-body energies. Therefore, if a given three-
body energy matches with the sum of two two-body reso-
nance energies, there are also infinitely many other pairs of
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continuum (non-resonant) two-body energies whose sum
gives the same three-body energy. Thus, it is not a triv-
ial conclusion that only the particular three-body state of
matching energy corresponds to a three-body resonance
defined as a pole in the three-body S-matrix.

Let us then investigate this more closely. From the
separability of the Hamiltonian it follows that the three-
body wave function is the product of the wave functions
describing the ki and kj two-body subsystems. For un-
bound two-body systems the two-body wave function can
be expanded in partial waves, and the three-body wave
function takes then the form

Ψ (+)(x,y,kx,ky) =




√

2

π

∑

`xm`x

i`x
u`x
(x, kx)

xkx
Y`xm`x

(Ωx)Y
?
`xm`x

(Ωkx
)





×





√

2

π

∑

`ym`y

i`y
u`y
(y, ky)

yky
Y`ym`y

(Ωy)Y
?
`ym`y

(Ωky
)



 ,

(9)

where (x,y) refer to the Jacobi system in fig. 1 and the
momenta of the corresponding subsystems are kx and ky.
The spherical harmonics and the two-body radial func-
tions are denoted Y`m`

and u`.
Following [19], also the continuum wave function for a

three-body system of spinless particles can be written as

Ψ (+)(x,y,kx,ky) =
∑

KLM`x`y

Y
(`x`y)∗
KLM (Ωκ)

×
∑

K′L′M ′`′x`
′

y

f
(K′`′x`

′

yL
′)

K`x`yL
(κρ)Y

(`′x`
′

y)

K′L′M ′(Ω) (10)

where (x,y), (kx,ky), Ω and Ωκ could correspond to any
of the three possible sets of Jacobi systems. We omitted

the index i. The hyperradial functions, f
(K′`′x`

′

yL
′)

K`x`yL
, are

solutions to eq. (5) where we now specified the indices
n and n0 and explicitly included the factor κ in the ar-

gument. The hyperspheric harmonics Y
(`x`y)
KLM (Ω) can for

instance be found in [7]. Using the orthogonality of the
hyperspheric harmonics, we immediately have

f
(K′`′x`

′

yL
′)

K`x`yL
(κρ) =

∫

dΩ

∫

dΩκΨ
(+)(x,y,kx,ky)

×Y (`x`y)
KLM (Ωκ)Y

(`′x`
′

y)∗

K′L′M ′(Ω) (11)

and by inserting eq. (9) into (11) we get

f
(K′`′x`

′

yL
′)

K`x`yL
(κρ) = δ`x`′xδ`y`′yδLL′

2

π
i`x+`yN

`x`y

K N
`x`y

K′

×
∫ π/2

0

dακ(sinακ)
`x+2(cosακ)

`y+2P
(`x+ 1

2
,`y+ 1

2
)

n (cos 2ακ)

×
∫ π/2

0

dα(sinα)`x+2(cosα)`y+2P
(`x+ 1

2
,`y+ 1

2
)

n′ (cos 2α)

×u`x
(x, kx)

xkx

u`y
(y, ky)

yky
, (12)

whereN
`x`y

K is the normalization constant appearing when
expressing the hyperspheric harmonics in terms of the
spherical harmonics and the Jacobi polynomials [7]. Due
to the delta functions, the three-body hyperradial func-
tions in eq. (12) are block-wise diagonal and each block
matrix can, for given (`x, `y, L), be labeled by the indexes
KK ′. Note also that the wave function does not depend
on the total orbital angular momentum L. All L-values
allowed by coupling are degenerate.

In the limit of zero interactions between the core and
the light particles the two-body radial wave functions
u`(x, k)/xk become the spherical Bessel function j`(xk),
and eq. (12) becomes

f
(K′`′x`

′

yL
′)

K`x`yL
(κρ) = δ`x`′x

δ`y`′y
δLL′δKK′i

K JK+2(κρ)

(κρ)2
, (13)

where JK+2 is a Bessel function of the first kind. Inserting
(13) into (10) we then obtain the three-body wave function

Ψ (+)(x,y,kx,ky) =
∑

K`x`yLM

iK
JK+2(κρ)

(κρ)2
Y

(`x`y)∗
KLM (Ωκ)Y

`x`y

KLM (Ω)

≡ 1

(2π)3
ei(kx·x+ky·y) (14)

and the plane waves are recovered from the hyperradial
partial wave expansion.

The large-distance asymptotic behaviour of the three-
body radial wave functions, eq. (12), can be obtained from
the asymptotics of the two-body wave functions, that for
the case in which none of the two-body core-particle sub-
systems is bound has the form

u`(x, k)

xk
→ 1

2

(

h
(2)
` (xk) + s`(k)h

(1)
` (xk)

)

, (15)

where h
(i)
` are the corresponding two-body Hankel func-

tions of first and second kind, and s`(k) is the two-body
S-matrix. Inserting eq. (15) into (12) and using the ex-
pressions given in the appendix, we obtain

f
(K′)
K (κρ) −→ iK

′

(κρ)2

[

H
(2)
K+2(κρ)δ

K′

K + S
K′

K (κ)H
(1)
K+2(κρ)

]

,

(16)
where we omitted the unimportant block indexes
(`x, `y, L). Then eq. (16) is identical to eq. (6) after divi-

sion by the phase factor 1/ρ5/2 in eq. (3). The three-body
S-matrix takes the form

SK
′

K (κ) =
2
∫ π/2

0
dακΦ

(`x`y)
nn′ (ακ)s`x

(kx)s`y
(ky)

∫ π/2

0
dακΦ

(`x`y)
nn′ (ακ)(s`x

(kx) + s`y
(ky))

, (17)

where

Φ
(`x`y)
nn′ (ακ) = (sinακ)

2`x+2(cosακ)
2`y+2

×P (`x+ 1

2
,`y+ 1

2
)

n (cos 2ακ)P
(`x+ 1

2
,`y+ 1

2
)

n′ (cos 2ακ), (18)
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is a smooth function of ακ given in terms of the Jacobi

functions P
(`x+ 1

2
,`y+ 1

2
)

n with K = 2n + `x + `y and K
′ =

2n′ + `x + `y.

The integrands in eq. (17) contain the two-body S-
matrices depending on corresponding momenta. The inte-
gration variable maintains the total energy of the two sub-
systems while varying the ratio of their momenta. Assume
that one pole of one of the subsystems is a first-order pole
which does not coincide with any pole of the other subsys-
tem, then the integrations in eq. (17) across the pole give
a smooth function without trace of the pole. However, if
two poles from different subsystems exist simultaneously
the product of two-body S-matrices in the numerator of
eq. (17) results in a pole term of second order, which after
integration across the pole, leaves a first-order pole in the
three-body S-matrix. The energy of this three-body pole
corresponds then precisely to the sum of the energies of
the two two-body poles.

If one pole is of higher order, and not coinciding with
a pole from the other subsystem, it would survive the
integration precisely in the same way in numerator and
denominator. Thus no trace is left in the three-body S-
matrix. A three-body pole only arises when two two-body
poles belonging to different subsystems exist simultane-
ously. Combining any order of coinciding poles from the
two subsystems is then seen to produce a three-body pole
of an order equal to the smallest order of the two-body
poles involved. This proves that the three-body poles ap-
pear if and only if the energy is equal to the sum of ener-
gies of two two-body poles from different subsystems. The
smallest order of the two coinciding poles reappears in the
three-body pole.

In case of having a two-body bound state, the corre-
sponding two-body asymptotics is not given by eq. (15)
but by a falling off exponential e−kx, where k is deter-
mined by the two-body binding energy. The three-body
properties are then directly dictated by the two-body S-
matrix describing the remaining core-particle subsystem.
If this two-body S-matrix has a pole corresponding to a
two-body bound state, the three-body system is obviously
bound with a binding energy equal to the sum of the two
two-body binding energies. If the two-body S-matrix has
a pole corresponding to a two-body resonance (or virtual
state), the three-body system has then a resonance (or
virtual state) that actually corresponds to a resonance (or
virtual state) of the two-body system made by the bound
two-body state and the remaining third particle.

At this point it is also important to mention that we
are identifying poles of the S-matrix in the fourth quad-
rant of the energy plane and resonances. However, strictly
speaking, for a pole to be considered a resonance it is
required that its width is clearly smaller than the energy
separation between resonances. In this way resonances are
the poles of the S-matrix close enough to the real energy
axis. It can certainly happen that when two complex en-
ergies corresponding to two singularities in the S-matrix
are added, the final energy can be close to the negative
imaginary axis, or even in the third quadrant of the en-

ergy plane. These singularities should not be considered
as resonances in the sense given above.

The formalism leading to the expression for the three-
body S-matrix is applicable for a very different system, i.e.
three particles of finite mass with only one non-vanishing
two-body interaction. If we choose the Jacobi coordinate
system where x is related to the non-zero two-body in-
teraction the wave function is again given by eq. (9) with
a Bessel function instead of u`y

/(yky). All derivations re-
main unchanged and we arrive at the S-matrix in eq. (17).
The difference is that now only the two-body S-matrix re-
lated to the x-degree of freedom has poles. Therefore the
three-body system has no S-matrix poles.

This system effectively also consists of two indepen-
dent two-body systems, but now reached in a completely
different limit with one non-zero interaction and arbi-
trary masses. The result then illustrates other aspects of
the continuum properties for three-body systems. In both
cases the conclusion is that one subsystem alone cannot
produce three-body resonances or virtual states. At least
two different subsystems must collaborate and simulta-
neously contribute with coinciding poles. It then seems
inevitable that, if all the three two-body subsystems only
have poles, then fully realistic three-body systems must
also have only poles.

3.2 Particles with spin

The results in the previous subsection remain valid for
particles of non-zero spin if the two-body interactions are
spin-independent, because then the spin part of the wave
function is decoupled from the coordinate part. In fact,
even in the case of identical particles the spin part can
always be used to establish the proper (anti)symmetry of
the wave function without changing the coordinate part.
The only exception is two identical bosons with zero spin
where the spin part of the wave function always is sym-
metric under exchange of the two bosons. Therefore odd
values of the relative orbital angular momentum between
the bosons are strictly forbidden. This fact leads to impor-
tant differences compared to non-identical particles [31].

When the two-body interactions are spin dependent,
the separability of the three-body Hamiltonian for the sys-
tem shown in fig. 1 can disappear. We denote the spins of
particles i, j, and k by si, sj , and sk, respectively. Let us
for simplicity assume that the particle-core interactions
of the system in fig. 1 contain a central plus a spin-spin

term, i.e., Vki = V
(ki)
c + V

(ki)
ss ji · sk, where ji = `ki + si

and `ki is the relative orbital angular momentum between
the core and particle i (and similarly for the Vkj interac-
tion). As shown in [26], this type of spin-spin operator is
especially convenient, since it guarantees conservation of
the quantum number ji in agreement with the intrinsic
motion of particles in the core possibly being identical to
the particles of the three-body system.

The two-body Hamiltonian Hki is then diagonal in the
basis {|sk, (si, `ki)ji; jki〉}, where jki is the total two-body
angular momentum after coupling of ji to the spin of the
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. (21)

core sk. We denote the corresponding two-body eigenval-

ues by E
(`ki,ji,jki)
ki . The natural basis to describe the three-

body system is then {| [sk, (si, `ki)ji] jki, (`kj , sj)jj ; J〉},
where J is the total three-body angular momentum. The

two-body Hamiltonian Hki with eigenvalues E
(`ki,ji,jki)
ki is

diagonal in this three-body basis. This is in contrast to
the remaining two-body Hamiltonian Hkj .

We can calculate the matrix elements of the three-body
Hamiltonian in this basis. With the expression

| [sk, (si, `ki)ji] jki, (`kj , sj)jj ; J〉 =
∑

jkj

(−1)jki+jkj+ji+jj

√

2jki + 1
√

2jkj + 1

×
{

jj sk jkj
ji J jki

}

| [sk, (`kj , sj)jj ] jkj , (si, `ki)ji; J〉 (19)

we obtain by recoupling that

〈qjki|H|q′j′ki〉 = δqq′δjkij′ki
E

(`ki,ji,jki)
ki

+δqq′(−1)jki−j′ki

√

(2jki + 1)(2j′ki + 1)

×
∑

jkj

(2jkj + 1)E
(`kj ,jj ,jkj)
kj

{

jj sk jkj
ji J jki

}{

jj sk jkj
ji J j′ki

}

,

(20)

where q = {`ki, `kj , ji, jj}. Therefore the three-body
Hamiltonian is diagonal in blocks defined by the quantum
numbers q.

As an example, we show the 2×2 block corresponding
to a core and two light particles all three with spin 1/2.
We further assume ji = jj = 1/2, and J = 1/2 confining
jki and jkj to the values 0 and 1. We note that eq. (20) de-
pends on the two-body relative orbital angular momenta,
`ki and `kj , only through the two-body energies. Then the
corresponding block is given by

see eq. (21) above

This illustrates that even for the schematic case in
fig. 1, where particles i and j do not interact with each
other, the three-body Hamiltonian is not separable any-
more. The three-body eigenvalues are then not given by
the sum of the two-body eigenvalues. When particles i

and j are identical and `ki = `kj = `, then E
(`, 1

2
,jki=0)

ki =

E
(`, 1

2
,jkj=0)

kj = E(0) and E
(`, 1

2
,jki=1)

ki = E
(`, 1

2
,jkj=1)

kj = E(1),

and the eigenvalues of the matrix (21) are 1
2E

(0) + 3
2E

(1)

and 3
2E

(0) + 1
2E

(1). Only the first of these eigenvalues
corresponds to an antisymmetric eigenfunction under ex-
change of particles i and j. It is precisely twice the aver-
age energy of the two two-body energies. Due to the Pauli

principle, the two light fermions must occupy both the
two possible two-body states with angular momentum 1

2 .
Then the relevant energies are not the individual energies
of the two two-body states, but their average value.

When none of the two-body interactions contains the
spin-spin term we have that

E
(`ki,

1

2
,jki=0)

ki = E
(`ki,

1

2
,jki=1)

ki ≡ E
(`ki,

1

2
)

ki , (22)

E
(`kj ,

1

2
,jkj=0)

kj = E
(`kj ,

1

2
,jkj=1)

kj ≡ E
(`kj ,

1

2
)

kj , (23)

and the Hamiltonian (21) is diagonal, with identical di-

agonal terms given by E
(`ki,

1

2
)

ki + E
(`kj ,

1

2
)

kj , which is the
result obtained in the previous section for spin-zero sys-
tems. When only one of the two-body interactions has
a non-zero spin-spin term (e.g., Vki, eq. (22) is invalid
and eq. (23) is valid) the Hamiltonian is diagonal in the
basis {| [sk, (si, `ki)ji] jki, (`kj , sj)jj ; J〉} with the energies
E

(`ki,
1

2
,jki=0)

ki +E
(`kj ,

1

2
)

kj and E
(`ki,

1

2
,jki=1)

ki +E
(`kj ,

1

2
)

kj . There
are then two possible three-body states, that again are
given by the sum of the two-body energies.

4 General properties

The results obtained in the previous section for the sys-
tem in fig. 1 can be taken as a test for the numerical
method used to compute three-body states. Taking then
the schematic system as starting point we analyze the
main properties of the three-body states, and how they
evolve in the energy plane when different ingredients are
added to the calculations.

4.1 Bound states and resonances

We maintain the schematic model where V23 = 0 and
m1 = ∞. We first assume that both V12 and V13 only
act in relative p-waves producing resonances of complex
energies E12 and E13, respectively. The three-body
computation then leads to the results shown in fig. 2
for a specific set of parameters. In the small panel,
together with the discretized complex rotated three-body
continuum states (plotted for three different scaling
angles), there are two additional complex rotated branch
cuts starting at each of the two-body resonance energies
(crosses in the figure). These branch cuts correspond to
two of the particles in a two-body resonant state and
the third particle in the continuum. To keep the figure
cleaner these cuts have not been plotted. Taking b as
an arbitrary length unit, the three-body system has a
resonance at the energy 2mb2E/~2 = 0.097 − i0.040,
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Fig. 2. Three-body resonance energy and radial wave function
for V23 = 0 and two Gaussian p-wave interactions V12 and V13

with ranges b12 = 1.5b and b13 = b. The strengths produce
resonances at 2mb2E12/~

2 = 0.073 − i0.033, 2mb2E13/~
2 =

0.024 − i0.007. The masses are m1 = ∞, m2 = m, m3 =
3m. Small graph: the solid, long-dashed and short-dashed lines
connect the computed continuum spectra for rotation angles
θ = 0.23, 0.25, 0.27, respectively. The circle above these lines
is a three-body resonance independent of θ. Big graph: the
thick lines are the real (solid) and imaginary (dashed) parts
of the lowest hyperradial adiabatic wave function of the three-
body resonance when θ = 0.25. The corresponding thin (solid,
dashed) lines show the asymptotic behaviour.

clearly distinguishable from the continuum background
and independent of the rotation angle. The computed
energy is precisely at E = E12 + E13, as found in sect. 3.
This numerical result is then proving the efficiency of
the numerical method. To illustrate that this indeed is a
three-body resonance we also show the lowest radial wave
function computed for a given rotation angle θ. Both the
real and imaginary parts vanish asymptotically following

the corresponding Hankel function H
(1)
K+2 as required for

a pole of the S-matrix as seen from eq. (6).

When one of the two-body systems is bound and the
other has a resonance the three-body state with energy
equal to the sum of the two-body energies is simply a
two-body resonance of one particle relative to the two-
body bound state. This is illustrated in fig. 3, where one
two-body resonance remains unchanged while the other
two-body state is varied from resonance to bound state.
When one two-body system is bound, and thus appearing
on the negative real energy axis (open circles), the three-
body energies (squares) appear at the same distances to
the left of the fixed two-body resonance (black circle).

If the attractive interaction binding the two-body sys-
tem decreases, at some point the two-body state enters
through the origin into the fourth quadrant of the energy
plane and becomes a two-body resonance. In parallel, the
three-body energy (squares) approaches the two-body res-
onance energy (black circle) and continues through the
two-body resonance in southeastern direction all the time
following the addition rule.

Fig. 3. Real (ER) and imaginary (EI) energy (E = ER + iEI)
of the three-body states (squares) for a system with parameters
as in fig. 2. The resulting energy is the sum of a fixed two-body
resonance energy (black circle) and the energy of a varying two-
body state (open circles). When this two-body state is bound
the three-body state is the two-body resonance relative to the
bound state.

4.2 Virtual states

The complex scaling method can be viewed as an ana-
lytic continuation into complex coordinates, such that res-
onances are “pulled out” of the continuum. Unfortunately
the method fails when the pole corresponds to a virtual
state, due to the necessary large rotation angle. Virtual
states remain in the unphysical Riemann sheet, and nu-
merical investigation of their effects is more difficult.

Let now the interactions V12 and V13 correspond to
a virtual s-state and a p-resonance of energies E12 and
E13, respectively (V23 = 0, m1 = ∞). Then, a 1− three-
body S-matrix pole should be present at E = E12 + E13.
To test this numerically we include an attractive s-wave
interaction V23 which, combined with the other interac-
tions, is sufficiently strong to reveal the existence of a 1−

three-body resonance. We show in fig. 4 how the complex
energy of this resonance moves as the strength of V23 is
varied. The strongest attraction (the point closest to the
origin) corresponds to a virtual state in the 2-3 subsys-
tem at an energy of about −0.004 in fig. 4. A very small
additional attraction would bind the three-body system,
which would be Borromean if the three-body system be-
comes bound before the 2-3 subsystem.

When the strength of V23 decreases the three-body res-
onance moves (closed circles) towards the energy E13 of
the p-resonance. If we could track the three-body reso-
nance for even weaker V23 we would for some non-zero
value find that it precisely coincides with E13 (cross),
reaching then the discontinuity cut of the Riemann sheet.
For weaker V23 the three-body pole could move through
this cut into any other Riemann sheet, but it is tempting
to suggest that these states could be interpreted as two-
body virtual s-states of particle 2 relative to the resonant
state of particles 1 and 3. Thus such a three-body state
is not a three-body resonance but a virtual state on the
unphysical Riemann sheet, although it is not possible to
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Fig. 4. Energies of the 1− three-body states for a system with
the same masses as in fig. 2. The p-wave and s-wave inter-
actions, V13 and V12, correspond to a resonance and a virtual
state indicated by the crosses. The thick open square is the sum
of the two two-body energies. Inclusion of a varying attractive
s-wave interaction V23 leads to the three-body resonance ener-
gies given by the solid circles. For a fixed value of V23, when
the two-body p-resonance moves as shown by the open trian-
gles, then the three-body resonances do it as given by the open
circles.

see numerically how this energy (square) is reached when
V23 = 0.

This can be better understood if the s-state is bound as
illustrated in fig. 3. When the s-wave attraction is reduced
until the bound-state energy is zero the three-body state
moves in parallel towards the resonance energy. A contin-
ued decrease of the attraction turns the two-body bound
state into a virtual s-state, and the two-body pole moves
continuously from the physical to the unphysical Riemann
sheet. In parallel, the three-body pole moves continuously
through the p-resonance onto another Riemann sheet.

The connection between two and three-body reso-
nances are very intimate even when all three masses and
interactions are non-zero. This is emphasized in fig. 4
where V13 is varied for fixed V23. Then the 1

− three-body
resonances (open circles) follow precisely the motion of the
two-body resonances (open triangles). The double arrows
connect each two-body resonance with its corresponding
three-body state. A variation of the two-body complex en-
ergy produces a similar energy change in the three-body
state.

For completeness we also notice that virtual states in
both subsystems lead to virtual three-body states with an
energy following the sum rule and sitting in the negative
energy axis of the unphysical Riemann sheet.

4.3 Finite mass and angular momentum coupling

In a less schematic model also m1 has to be finite. Still
often the three-body structure is mostly influenced by two
two-body subsystems each dominated by one partial wave.
Thus we relax the condition m1 =∞ but maintain the re-
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Fig. 5. Upper part: three-body resonances for a system with
two-body reduced masses and resonance parameters as in
fig. 2 (p + p case). In the p + d case the highest p-resonance
has been substituted by a d-resonance with 2mb2E12/~

2 =
0.145− i0.009. Lower part: three-body resonances for a system
with µ12 = µ13 = 0.8m and p-resonances at E12 = E13 with
2mb2E12/~

2 = 0.143 − i0.059. The fixed two-body resonances
are indicated by the crosses and the three-body resonances by
a big open circle (m1 =∞), and solid circles (L = 0), squares
(L = 1), triangles (L = 2), and asterisks (L = 3) for finite m1

values.

duced masses µ12 and µ13 by adjusting m2 and m3. The
two-body properties then remain unchanged for the same
interactions V12 and V13. The finite masses destroy the
separability into two independent subsystems, and the
eigenvalues of the three-body Hamiltonian are not any
more given by the sum of the two-body eigenvalues. Also,
a given combination of partial waves may couple to several
total angular momenta with different energies.

When two partial p-waves both contribute, the total
angular momentum and parity must be Lπ = 0+, 1+, 2+,
and combining a p-wave and a d-wave we get Lπ = 1−,
2−, 3−. The corresponding threefold degeneracy is broken
for finite m1 as illustrated in the upper part of fig. 5.
In general, for fixed structure of the system (fixed re-
duced masses, interactions, relative distances between par-
ticles . . . ), the three-body relative kinetic energy is smaller
for finite mass of the core than for infinite mass, as seen
by comparing p2

ik/2µik + p2
j,ik/2µi,jk in both cases. Thus

the three-body resonances often tend to move towards the
origin.
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However, simultaneous conservation of angular mo-
mentum and center-of-mass might require a change of
structure resulting in less total interaction energy than
from the two resonances. Thus, the three-body resonance
can move in all directions (fig. 5). As in the previous calcu-
lations, only the components corresponding to two-body
resonances are included. The finite-mass effects are rela-
tively small in all cases except for two p-waves coupled
to Lπ = 1+. This can be understood by expressing the
Faddeev component related to the 1-3 subsystem in the
Jacobi coordinates of subsystem 1-2. For L = 1 a p-wave
“rotates” fully into a p-wave. Then the p-wave attraction
is fully exploited and the resulting three-body state has
the lowest possible energy. When L and the two two-body
angular momenta are equal there is a similar tendency, de-
creasing with L, to maximize the total attraction. Other
components obtained by rotation are less important and
uneven two-body angular momenta cannot exploit the at-
traction as efficiently, producing a much smaller change
with m1. In practice detailed quantum-mechanical com-
putations are needed for each case to determine the size
of the effects.

It is remarkable that the effects of the coupling and
the center-of-mass motion can lower the energy sufficiently
to produce a 1+ three-body bound state (lower part of
fig. 5). This is a Borromean system obtained by only two
two-body interactions. When one resonance is replaced by
a virtual state we have not numerically been able to find
any three-body resonance produced entirely by finite-mass
effects and without change of interactions.

5 Numerical illustrations

The origin of the resonances and bound states can be
illustrated by different examples connecting the bare
schematic model with well-known realistic nuclear struc-
tures. We first study two nucleons outside the spin-zero
α-particle core, then we present detailed realistic compu-
tations for the same A = 6 systems, and finally we extend
to the non-zero core-spin of the Borromean nucleus 17Ne.

5.1 Core with zero spin

Let us consider a system made by an infinitely heavy core
and two non-interacting spin-(1/2) particles. The core is
assumed to be charged (with twice the proton charge) and
the particle-core reduced mass is 0.8m, where m is the
nucleon mass. This system is very similar to an α-particle
and two nucleons. The particle-core reduced mass is the
same, and the center-of-mass effects are very small and
not relevant for our present purpose [31].

Let us also consider a simple particle-core interaction
given by a central short-range p-wave interaction produc-
ing a particle-core (uncharged) resonance at an energy of
0.74 MeV with a width of 0.60 MeV. When the light parti-
cle is assumed to have the proton charge, the same short-
range interaction produces a core-particle resonance with
energy and width of 1.60 MeV and 1.26 MeV, respectively.

-2 -1 1 2 3
ER (MeV)

-1.2

-0.8

-0.4

E
I (M

eV
)

0+

2+

-2 -1 1 2 3
ER (MeV)

-1.2

-0.8

-0.4

E
I (M

eV
)

0+ (T=1)
2+ (T=1)
1+ (T=0)

-2 -1 1 2 3
ER (MeV)

-1.2

-0.8

-0.4

E
I (M

eV
) 0+

2+

6He

6Li

6Be

α-n res.

α-n res.

α-p res.

α-p res.

Vnn=0

Vnp=0

Vpp=0

Fig. 6. Evolution of the three-body resonances for 6He (cir-
cles), 6Li (squares), and 6Be (triangles), when the nucleon-
nucleon interaction is progressively introduced. The big open
symbols correspond to zero nucleon-nucleon interaction. The
0+ and 2+ resonances are shown by the closed and open sym-
bols, respectively. The asterisks in the 6Li case are the 1+ res-
onance corresponding to the T = 0 channel in the neutron-
proton interaction. The crosses show the alpha-nucleon reso-
nance energies.

These values are consistent with the lowest p-resonances
in 5He and 5Li, respectively [32].

In fig. 6, we show the results for one heavy and two
light particles resembling the 6He, 6Li, and 6Be systems.
The upper, middle and lower parts correspond to both
uncharged, one neutral and one with the proton charge,
and both with the proton charge, respectively. When the
nucleon-nucleon interaction is equal to zero, the three-
body system must have a resonance at an energy equal
to the sum of the two two-body resonance energies. This
is again confirmed by calculations using the complex ro-
tated adiabatic expansion method. We obtain the three-
body resonances indicated by the big open circle, big open
square, and big open triangle in the upper, central, and
lower parts of fig. 6. They match precisely with the sum
of the two-body energies each indicated by a cross.

The known spectrum for the schematic three-body
system, determined completely by the internal two-body
states, can be used as starting point to trace the connec-
tion with the “realistic” three-body system. This must be
done by including the effects produced by i) an additional
interaction between the two light particles, ii) quantum
numbers conservation (like the angular momentum), and



374 The European Physical Journal A

iii) center-of-mass effects originating from the finite mass
of the core.

Effects i) and ii) are closely connected. Once the in-
teraction between the two light particles is included the
three-body wave function, initially independent of the to-
tal angular momentum (eq. (12)), is now depending on
L. This can be seen in the upper part of fig. 6, where we
include the neutron-neutron interaction multiplied by a
global factor varying from 0 to 1. Then the 0+ and 2+

states evolve as shown by the solid and open circles, re-
spectively. When the full neutron-neutron interaction is
included (last point on each curve), the system similar to
6He has a bound Borromean 0+ state (with a binding en-
ergy close to −1.9 MeV) and a very narrow 2+ three-body
resonance with energy 0.34 MeV.

For the system similar to 6Li shown in the middle part
of the figure one of the light particles has the charge of
the proton. The neutron-proton interaction is again con-
tinuously switched on from zero to full strength. The 0+

and 2+ states (T = 1), analogous to those in the upper
part, move as given by the closed and open squares, re-
spectively. The final 0+ state is still below the three-body
threshold, with a binding energy of −1.0 MeV. The fi-
nal 2+ resonance has an energy of 1.1 MeV and a width
of 0.1 MeV. The shift in energy compared to the states
in the upper part is produced by the Coulomb repulsion
between the core and the charged particle. Now the al-
lowed T = 0 coupling gives rise to additional three-body
states, e.g. the 1+ state shown by the asterisks. When
the three-body 1+ state becomes bound the system is still
Borromean. However, for some threshold strength the two
light particles become bound, and the system is not Bor-
romean anymore. When the full interaction is included
the two light particles then form a deuteron nucleus, and
the three-body 1+ state becomes the ground state of the
system, very similar to 6Li, with a binding of about −5.5
MeV (outside the scale of the figure).

In the lower part of the figure we show results for two
light particles each with the proton charge. As in the up-
per part only the T = 1 states are allowed, and since all
the three two-body subsystems feel the Coulomb repul-
sion, the energies of the 0+ states (closed triangles) and
the 2+ states (open triangles) are clearly larger than in the
previous cases. In fact, when the full proton-proton inter-
action is included the 0+ ground state is unbound, with
resonance energy and width of 0.5 MeV and 0.2 MeV, re-
spectively. For the 2+ resonance the energy and width are
2.3 MeV and 0.5 MeV.

The effects produced by the finite mass of the core
(center-of-mass effect), do not change the previous ener-
gies significantly (typically no more than 100 keV [31]).
The spectra obtained for the “simplified” 6He, 6Li, and
6Be nuclei (only a simple p-wave particle-core interaction
has been used), indicate where to find the true states.
This is seen in table 1, where the second column gives the
computed energies. A comparison with the experimental
results (last column) reveals that in all the three nuclei the
main features of the spectrum are well reproduced. There-
fore, starting from the schematic case where the three-

Table 1. Computed and experimental energies (in MeV) for
6He, 6Li, and 6Be. The energies within brackets are (ER, ΓR),
that give the resonance energy and its width. The computa-
tions correspond to the schematic system described in the text
(second column), realistic calculations without inclusion of an
effective three-body force (third column), and the same calcu-
lation when a three-body force is used (fourth column). The
experimental values (last column) are taken from [32]. When
not specified, the error bars are smaller than the last digit.

Scheme Real. (no 3-b) Realistic Exper.
6He 0+ −1.87 −0.04 −0.96 −0.97± 0.04

2+ (0.34,0.01) (1.02,0.28) (0.87,0.11) (0.83,0.11)

0+ −0.93 (0.75,0.15) −0.14 −0.14
6Li 1+ −5.60 −3.05 −3.73 −3.70

2+ (1.07,0.09) (1.92,0.87) (1.66,0.50) (1.67,0.54)
6Be 0+ (0.55,0.16) (2.05,0.58) (1.37,0.11) (1.37,0.09)

2+ (2.32,0.46) (3.10,1.89) (3.02,1.65) (3.04,1.16)

body energy is given by the sum of the two-body energies
and taking into account the main characteristics of the
remaining two-body interaction, it is possible to estimate
where the three-body states must be placed.

As seen in the table, the computed energies are always
lower than the experimental ones. This is because the
nucleon-core interaction is without any spin-orbit term,
and consequently the two possible p-resonances (p1/2 and
p3/2) appear at the same energy. This is overbinding the
system, since the p1/2-resonance is known to be a few
MeV higher [32], and a realistic calculation must include
a repulsive term pushing up this resonance to the cor-
rect value. On top of this, other than p-waves should be
included in the calculation. For s-waves the effect of the
Pauli principle must be accounted for, since the s1/2-shell
is fully occupied in the α-core. This effectively amounts
to a highly repulsive s-wave potential at short distances,
also pushing the computed energies towards higher values.
Furthermore, it is well known that three-body calculations
using only realistic two-body interactions typically under-
bind the system. This can be cured by inclusion of an ad-
ditional potential taking into account possible three-body
effects to reproduce the experimental values.

Realistic detailed calculations using the (complex
scaled) hyperspheric adiabatic expansion method concern-
ing 6He can be found in [33,34]. For completeness, we show
in the next section the results obtained for 6Li and 6Be
when similar calculations are performed.

5.2 Realistic calculations for 6Li and 6Be

In [33] the use of phase equivalent potentials is suggested
as an efficient method to take into account the Pauli prin-
ciple in three-body calculations. This method, together
with the hyperspheric adiabatic expansion method, is used
to compute the ground state of 11Li and 6He. Thus, for
6He the alpha-neutron s-wave interaction is able to bind
the neutron into a Pauli forbidden state. To exclude this
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state we use a phase equivalent potential with exactly the
same phase shifts for all energies, but with one less bound
state. The p-wave interaction contains a central and a
spin-orbit term, such that the p3/2 and p1/2 resonances

in 5He are placed at the experimental energy values [32].
The neutron-neutron interaction can also be found in [33].

The calculation using only the two-body interactions
underbinds the three-body nucleus (third column in ta-
ble 1), and an additional effective three-body force is
needed to recover the experimental value (fourth column).
In [34] the same method supplemented by complex scaling
is used to compute the 2+ resonance in 6He. In the present
work the calculation is slightly simplified by using a repul-
sive s-wave alpha-neutron interaction to take the Pauli
principle into account. When the same phase equivalent
potential as for the ground state is used, the computed 2+

state in 6He is also given in the third and fourth columns
of table 1. As before, the calculation without a three-body
force is underbinding the system by about 0.5 MeV, and
an effective three-body force is again needed. In all the
calculations the three-body force is assumed to be Gaus-
sian with a range of 3 fm and the strength is adjusted to
fit the experimental value. For bound states it is obviously
possible to find a strength fitting precisely the experimen-
tal value. For resonances, this single parameter is fitting
simultaneously the energy and the width of the resonance.

For 6Li and 6Be we perform exactly the same calcu-
lations but adding the corresponding Coulomb interac-
tion for the two cases. The additional proton-core repul-
sion in 6Li is pushing up the energies of the 0+ and 2+

states compared to the energies obtained for 6He, and even
more for 6Be, where all the three two-body subsystems feel
the Coulomb repulsion. The computed energies are again
given in the third column of table 1 when only the two-
body interactions are used. As before, an effective three-
body interaction is needed to fit the experimental energies
(fourth column). The 0+ state in 6Li is still below the two-
nucleon separation energy threshold, although when the
three-body interaction is suppressed the computed state
appears to be unbound. Again, when the strength of the
three-body force is used to match the experimental reso-
nance energies, the widths are also well reproduced, except
for the 2+ state in 6Be, where the width is significantly
larger than the experimental value.

In addition to the 0+ and 2+ T = 1 states, in 6Li it is
also possible to have states with T = 0. These three-body
states correspond to structures where the neutron and the
proton form a deuteron (d) nucleus, suggesting a descrip-
tion of the nucleus as a d+α two-body system. Therefore,
we have performed a three-body calculation, identical to
the ones described above, but where the nucleon-nucleon
interaction has been substituted by the T = 0 interaction
used in [35]. This potential reproduces the experimental
deuteron binding energy, root-mean-square radius, elec-
tric quadrupole moment, and provides a d-wave content
of 5.6%. The correspondig computed energies for the 1+

(ground) state are also given in table 1.

The three-body Thomas-Ehrman shifts [36] of these
isobaric analog 0+ and 2+ states are then obtained from

table 1, i.e. in MeV (1.40,1.17,1.05) and (1.83,1.80,1.65)
for the realistic cases without and with three-body poten-
tial, respectively. The latter results coincide by definition
with the experimental values. The decreasing tendency in
the computed differences are due to the smaller energy and
the larger radii which in turn leads to smaller effects of the
Coulomb interaction. The underbinding is responsible for
this discrepancy with measurements.

5.3 Core with non-zero spin

When the three particles have non-zero spins and spin-
dependent two-body interactions, as in any realistic nu-
clear potential, then the three-body Hamiltonian is not
even separable in the schematic model with an infinitely
heavy core and two mutually non-interacting particles, see
section 3.2. The Hamiltonian matrix is then organized in
blocks with the matrix elements given by eq. (20).

An example is for 17Ne, that is well described as a
three-body system made by an 15O core and two pro-
tons [37]. The core of the system has negative parity and
spin 1/2. The two-body subsystem, 16F (15O+p), has four
low-lying resonances, two of them (0− and 1−) arise from
the coupling of a relative s1/2-wave and the spin of the

core, and other two (2− and 3−) result from the cou-
pling between a d5/2-wave and the spin of the core. The
experimental energies and widths (ER,ΓR) of these two-
body resonances are (0.535, 0.040± 0.020) MeV, (0.728±
0.006, 0.040) MeV, (0.959±0.005, 0.040±0.030) MeV, and
(1.256± 0.004, 0.004) MeV, respectively [38].

In [37] several proton-core interactions, all of them
reproducing the experimental energies and widths, are
given. These interactions contain spin-dependent opera-
tors, in particular the spin-splitting operator sc ·jp, where
sc is the spin of the core and jp results from the coupling
between the relative orbital angular momentum and the
spin 1/2 of the proton. In the following calculations we
shall use the s- and d-wave interactions corresponding to
a Gaussian two-body potential with the parameters given
in table 1 of [37], but where the spin-orbit strength has
been modified to push away the d3/2-resonances in

16F,
but keeping the two d5/2-resonances at the right energy.

In this way our slightly simplified 17Ne is characterized
exclusively by the 0−, 1−, 2−, and 3− resonances in 16F,
and we can perform for 17Ne the same kind of analysis as
in the previous cases.

Let us begin by performing calculations for the
schematic model without any proton-proton interaction
and for an infinitely heavy core. The effect of the finite
mass of the core is clearly smaller than for 6He, 6Li, and
6Be, and the core can safely be assumed to be infinitely
heavy.

When both protons are in an s-wave relative to the
core, only the 0− and 1− states in 16F are obtained, and
only the components with relative core-proton orbital an-
gular momentum equal to zero are included in the cal-
culation. In this case the total three-body angular mo-
mentum can only take the value J = 1/2 [37], and the
block to be diagonalized is given in eq. (21). From the two
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Fig. 7. 17Ne energies for the 1/2−, 3/2−, and 5/2− states as
a function of the percentage of the proton-proton interaction
included in the calculation.

possible eigenfunctions only one of them is antisymmetric
under exchange of the two protons, and corresponds to

the eigenvalue (E(0−) + 3E(1−))/2, that is twice the aver-
age energy of the two s1/2-resonances. This gives rise to a

1/2− energy of 1.32 MeV, that is recovered when the cal-
culation using the complex scaled hyperspheric adiabatic
expansion method is performed.

When the proton-proton interaction Vpp is progres-
sively introduced, the contribution from the d-waves starts
to be relevant, and the components with relative core-
proton orbital angular momentum equal to 2 are also in-
cluded. The energy of the 1/2− state then changes as
shown by the solid circles in fig. 7. Around 90% of the
proton-proton interaction is already binding the three-
body system, becoming then Borromean. The full proton-
proton interaction gives a binding of about 0.40 MeV and
a d-wave content of 37%. This binding is 0.3 MeV smaller
than the one given in table 8 of [37]. This is due to the fact
that in this calculation, in order to clean the structure of
17Ne, we have artificially pushed up the d3/2-resonances
by using a large spin-orbit splitting. This is also reducing
the d-wave content compared to the result in [37].

In ref. [37] we show how the 3/2− state in 17Ne is domi-
nated by the sd-interferences between the components. To
investigate this resonances both (0 and 2) core-proton rel-
ative orbital angular momenta are then needed and there-
fore included in the calculation. For the schematic 17Ne
model (Vpp = 0), one of the protons can be in one of the
s-resonances in 16F (0− or 1−), and the other can be in
one of the d5/2-resonances (2

− or 3−). Assuming J = 3/2,
the block in eq. (20) is already diagonal with only one

non-zero energy equal to E(1−) + E(2−). This energy of
1.65 MeV is recovered in the numerical calculation, which
also reveals that the only non-vanishing components cor-
respond to one proton in the s-wave 1− resonance and the
other in the d-wave 2− resonance. The evolution of the
energy when the proton-proton interaction is introduced
is shown by the white circles in fig. 7, reaching a final

value of 0.94 MeV. This value is also around 0.3 MeV less
bound than the one given in table 8 of [37].

Finally, in the figure we also show the evolution of the
lowest 5/2− resonance in 17Ne (solid squares) when Vpp is
introduced. This state is also dominated by sd-interference
components.

6 Qualitative considerations

Using the schematic case in which V23 = 0 as starting
point, it is possible to trace the behaviour of the three-
body resonances (figs. 2, 3, and 4) when the center-of-
mass effects and the V23 interaction are included. Taking
into account the main features of the V23 interaction, it is
then possible to make crude estimates concerning different
realistic systems.

For nuclear systems we take the mass unit m equal
to the nucleon mass and a length unit equal to a typical
range for the nuclear interaction (b = 2 fm). With this
choice, the lowest p-resonance in the neutron-alpha in-
teraction has dimensionless energy 2mb2|ER|/~2 ≈ 0.15.
Therefore, in 6He (α+n+n), before including the neutron-
neutron interaction, the three-body system must have a
resonance with dimensionless energy of about 0.30. The
neutron-neutron interaction has a low-lying virtual state
at 2mb2|ER|/~2 ≈ 0.02, which is enough to bind the three-
body state as evidenced by the bound state in 6He at
2mb2ER/~

2 ≈ −0.19.
For 11Li (9Li + n+n) the s-waves are pronounced and

the lowest neutron-9Li virtual s-state would after spin av-
eraging appear at about 0.07 which, combined with the
neutron-neutron interaction, is sufficient to bind the three-
body system. Substituting 9Li by a Λ-particle we arrive
at an unstable system. With the Λ-nucleon s-wave scat-
tering length of 2 fm obtained from hypertriton computa-
tions [35] the virtual s-state would be at around 1.7, too
large to bind the Λ-neutron-neutron system.

We can continue to a more speculative system ob-
tained by combining the recently discovered pentaquark
resonance with a third particle like a meson. The pen-
taquark, θ+, has a mass of 1540 MeV and decays mainly
into a kaon K+ and a neutron [39]. The energy above
threshold is then around 107 MeV, that corresponds to
a dimensionless energy of about 20. Thus, the neutron-
neutron interaction, that was able to bind α + n + n
and 9Li + n+ n, respectively with 0.15 and 0.07, but not
Λ + n + n with 1.7, cannot bind the K+ + n+ n system.
Thus a nucleon-kaon-meson cluster system would also ex-
ploit the intrinsic quark degrees of freedom and not resem-
ble any three-body structure although additional binding
would be picked up. In any case the narrow width of θ+

strongly suggests that the resonance cannot have nucleon-
kaon (two-particle) structure, but rather is a genuine five-
quark system or perhaps a more exotic structure.

The semi-quantitative knowledge obtained with the
schematic model can also be used for molecules due to
the use of dimensionless parameters. For molecules we
choose as typical scale units the mass of the 4He atom
and the range b = 10 Å. The 3He + 4He dimer has then
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2mb2|ER|/~2 ≈ 0.75 [40]. We can then expect that, except
for center-of-mass effects, the trimers 3He + 4He + 4He
and 4He + 3He + 3He should both have an unbound state
with dimensionless energy of about 1.50 when the interac-
tion between the two identical particles is neglected. How-
ever, including these interactions of dimensionless energies
0.02 for 4He + 4He and 5.2 for 3He + 3He, we arrive at
trimers 3He + 4He + 4He and 4He + 3He + 3He, respec-
tively bound and unbound as observed.

7 Summary and conclusions

The two-body interactions are assumed to determine com-
pletely the three-body structure including the continuum
properties. Close to the threshold of binding, slightly
above or below, the structure of the three-body sys-
tem mostly depends on the two-body low-energy scatter-
ing properties. These properties are periodically repeated
with increasing strengths of these attractive potentials
corresponding to one or many bound states in each of the
investigated channels. Therefore it is sufficient to study
unbound or weakly bound two- and three-body systems.

The low-energy scattering properties are determined
by the phase shifts and reflected in the poles of the S-
matrix, i.e. by the resonances and virtual states. Thus,
changing the two-body interactions simultaneously change
the energies of both two- and three-body resonances. The
relative changes of these energy observables are expected
to be intuitively easier to understand than by using the
connection via the two-body interaction strengths. The
strategy is then to vary the two-body resonances and vir-
tual states and study the changes of the corresponding
quantities in the three-body system.

We employ the efficient and well-tested method of
complex scaled hyperspherical adiabatic expansion. This
method is first briefly sketched to define the notation.
Then we define a schematic model with an infinitely heavy
core and two mutually non-interacting particles. We prove
mathematically for spin-zero particles that our formula-
tion provides a pole in the three-body S-matrix if and
only if the complex energy is equal to the sum of two
complex energies each corresponding to poles of different
two-body S-matrices for the two particle-core subsystems.
The generalization to non-zero spins are formulated and
shown to involve diagonalization of simple block-diagonal
Hamiltonians.

The general properties are demonstrated numerically
in schematic examples involving both resonances and vir-
tual states. We then investigate the sizes and trends result-
ing from a finite core mass, non-zero interaction between
the light particles and the coupling of different orbital an-
gular momenta. We use dimensionless units to allow easy
application on physics systems of different scales. Each of
these effects can be substantial but the structure of the
states can be uniquely traced back to the origin in the
structure of the schematic model. Borromean systems can
arise with only two interactions from center-of-mass effects
and a favorable coupling of two angular momenta.

For further numerical illustration we use essentially
realistic nuclear three-body systems, 6He, 6Li, and 6Be,

consisting of two nucleons and an α-particle to trace back
their measured spectra to our bare schematic model. The
effects of isospin symmetry and the mixing short-range
and Coulomb interactions are then seen. For completeness,
we also present unpublished and fully realistic calculations
of 6Li and 6Be. The origin of the structure is still appar-
ent, but to get accurate energies and wave functions we
must include effects of spin-orbit couplings and the Pauli
principle. Three-body Thomas-Ehrman shifts can then be
studied for these isobaric analog states. Finally the effects
of non-zero core spin is investigated for the Borromean
nucleus 17Ne consisting of 15O and two protons.

In the last section we explain, and illustrate by exam-
ples, how to make qualitative estimates of the three-body
energies and their structure from the two-body proper-
ties of the subsystems. First we test by known exam-
ples of Borromean halo nuclei, hypertriton, molecular he-
lium clusters and the recently highlighted more specula-
tive pentaquark.

In conclusion, we have demonstrated the strong corre-
lation between two- and three-body resonances. The three-
body energy and structure can be traced back to the prop-
erties of an infinitely heavy core and two non-interacting
light particles. Substantial changes are often needed to ar-
rive at accurate and realistic properties but the generic ori-
gin is apparent and revealing both structures and energies.

Appendix A. Useful integrals

The three-body S-matrix for the schematic model in
eq. (17) is obtained through the definition in eq. (16) by
inserting eq. (15) into eq. (12). Then the following inte-
grals are needed:
∫ π/2

0

dα(sinα)`x+2(cosα)`y+2P
(`x+ 1

2
,`y+ 1

2
)

n (cos 2α)

×h(1)
`x
(kxx)h

(1)
`y
(kyy) = (−1)nπ(sinακ)`x(cosακ)

`y

×P (`x+ 1

2
,`y+ 1

2
)

n (cos 2ακ)
H

(1)
K+2(κρ)

(κρ)2
, (A.1)
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∫ π/2
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Phys. Rep. 274, 107 (1996).
10. C.D. Lin, Phys. Rep. 257, 1 (1995).
11. T.N. Rescigno, M. Baertschy, W.A. Isaacs, C.W. McCurdy,

Science 286, 2464 (1999).
12. E.O. Alt, S.B. Levin, S.L. Yakovlev, Phys. Rev. C 69,

034002 (2004).
13. A. Delfino, T. Frederico, M.S. Hussein, L. Tomio, Phys.

Rev. C 61, 051301 (2000).
14. N.B. Shulgina, B.V. Danilin, L.V. Grigorenko, M.V.

Zhukov, J.M. Bang, Phys. Rev. C 62, 014312 (2000).
15. T. Myo, K. Kato, S. Aoyama, K. Ikeda, Phys. Rev. C 63,

054313 (2001).
16. N. Michel, W. Nazarewicz, M. Ploszajczak, K. Bennaceur,

Phys. Rev. Lett. 89, 042502 (2002).
17. R.Id. Betan, R.J. Liotta, N. Sandulescu, T. Vertse, Phys.

Rev. C 67, 014322 (2003).
18. J. Jörres, M. Wiescher, F.-K. Thielemann, Phys. Rev. C

51, 392 (1995).
19. E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 695,

109 (2001).

20. E. Garrido, D.V. Fedorov, A.S. Jensen, H.O.U. Fynbo,
Nucl. Phys. A 748, 39 (2005).

21. E.A. Kolganova, A.K. Motovilov, Y.K. Ho, Nucl. Phys. A
684, 623c (2001).
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